Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jessica J. Görlitz, Pia Nielsen, Hans Toftlund and Andrew D. Bond*

University of Southern Denmark, Department of Chemistry, Campusvej 55, 5230 Odense M, Denmark

Correspondence e-mail: adb@chem.sdu.dk

Key indicators

Single-crystal X-ray study
$T=180 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.036$
$w R$ factor $=0.095$
Data-to-parameter ratio $=13.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

2,6-Bis[bis(2-pyridyl)hydroxymethyl]pyridine

The crystal structure of the title compound, 2,6-bis[bis(2pyridyl)hydroxymethyl]pyridine, $\quad \mathrm{C}_{27} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{2}$, at 180 K contains intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ contacts. In space group $C 2 / c$, the molecule is sited on a twofold axis.

Comment

The methoxy derivative, viz. 2,6-bis[bis(2-pyridyl)methoxymethyl]pyridine, of the title compound, (I), has been employed as a neutral pentadentate ligand for the preparation of mononuclear biomimetic coordination complexes (de Vries et al., 1997; Goldsmith, Jonas, Cole \& Stack, 2002). The crystal structure of the free ligand has also been reported (Goldsmith, Jonas \& Stack, 2002). In the crystal structure of the title compound at 180 K , the H atoms of the hydroxyl groups lie approximately in the same plane as one of the pyridyl rings, forming intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ contacts with $\mathrm{H} \cdots \mathrm{N}=$ 1.90 (2) \AA and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}=128$ (2) ${ }^{\circ}$ (Fig. 1). The molecule is twofold symmetric, with atoms $\mathrm{N} 1, \mathrm{C} 1$ and $\mathrm{H} 1 A$ lying on the twofold axis.

(I)

Experimental

Under an argon atmosphere, a solution of 2-bromopyridine [6.1 ml in 250 ml dry tetrahydrofuran (THF)] was cooled in an acetone/dry ice bath and n-BuLi ($25 \mathrm{ml}, 2.5 \mathrm{M}$ in hexane) was added dropwise, maintaining the temperature below 203 K . A solution of 2,6 pyridinedicarbonyl dichloride (3.13 g in 25 ml dry THF) was added, followed by 25 ml of MeOH . The mixture was stirred overnight and allowed to warm to room temperature. After addition of 25 ml water and 50 ml aqueous $\mathrm{HCl}(10 \%)$, the organic layer was separated and made basic with NaOH . The product was extracted with dichloromethane and evaporation of the solvent left a crude brown oil, which was purified by flash column chromatography ($\mathrm{DCM} / 3 \% \mathrm{MeOH}$). Single crystals suitable for X-ray diffraction analysis were grown from a chloroform solution layered with hexane. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 8.49$ $\left(d, J=4.8 \mathrm{~Hz}, 6-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}, 4 \mathrm{H}\right), 7.73(s, \mathrm{C}-\mathrm{OH}, 2 \mathrm{H}), 7.53\left(t\right.$ of $d, J_{1}=$ $\left.7.9 \mathrm{~Hz}, J_{2}=1.9 \mathrm{~Hz}, 4-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}, 4 \mathrm{H}\right), 7.44\left(d, J=8.2 \mathrm{~Hz}, 3-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}, 4 \mathrm{H}\right)$, 7.18-7.13 ($\left.m, 3-\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}, 4-\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}, 5-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}, 7 \mathrm{H}\right)$. MALDI-TOF mass spectrometry: $m / z=448\left(M^{+}, 100 \%\right)$.

Received 1 July 2004 Accepted 5 July 2004 Online 9 July 2004

Crystal data

$\mathrm{C}_{27} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{2}$
$M_{r}=447.49$
Monclinic, $C 2 / c$
$a=15.0847(12) \AA$
$b=7.6587(6) \AA$
$c=18.4907(15) \AA$
$\beta=92.216(1)^{\circ}$
$V=2134.6(3) \AA^{3}$
$Z=4$

Data collection

Bruker-Nonius X8APEX-II CCD diffractometer
Thin-slice ω and φ scans
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)
$T_{\text {min }}=0.877, T_{\text {max }}=0.989$
6383 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.095$
$S=1.04$
2142 reflections
159 parameters
H atoms treated by a mixture of independent and constrained refinement
$D_{x}=1.392 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2609
reflections
$\theta=2.7-26.4^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=180$ (2) K
Block, yellow
$0.25 \times 0.15 \times 0.12 \mathrm{~mm}$

2142 independent reflections
1754 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.022$
$\theta_{\text {max }}=26.4^{\circ}$
$h=-18 \rightarrow 18$
$k=-9 \rightarrow 9$
$l=-23 \rightarrow 18$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0435 P)^{2}\right. \\
& \quad+1.2461 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.23 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.15 \mathrm{e}^{-3}
\end{aligned}
$$

Figure 1
The molecular structure of (I), showing displacement ellipsoids at the 50% probability level. H atoms are shown as spheres of arbitrary radius [symmetry code: (i) $1-x, y, \frac{1}{2}-z$]. Intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ contacts are shown by dotted lines.

References

Bruker (2003). SAINT. Version 7.06a. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker-Nonius (2003). APEX2. Version 1.0-8. Bruker-Nonius BV, Delft, The Netherlands.
Goldsmith, C. R., Jonas, R. T., Cole, A. P. \& Stack, T. D. P. (2002). Inorg. Chem. 41, 4642-4652.
Goldsmith, C. R., Jonas, R. T. \& Stack, T. D. P. (2002). J. Am. Chem. Soc. 124, 83-96.
Sheldrick, G. M. (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (2003). $S A D A B S$. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Vries, M. E. de, La Crois, R. M., Roelfes, G., Kooijman, H., Spek, A. L, Hage, R. \& Feringa, B. L. (1997). Chem. Commun. pp. 1549-1550.

